Exercice 1

Déterminer les coefficients stoechiométriques des réactions suivantes :

a)
$$Fe^{2+} + Cr_2O_7^{2-} + H^+ \rightarrow Fe^{3+} + Cr^{3+} + H_2O$$

b)
$$Cr_2O_3 + NaNO_3 + Na_2CO_3 \rightarrow Na_2CrO_4 + NaNO_2 + CO_2$$

c)
$$NaNO_3 + NaOH + Zn \rightarrow NH_3 + Na_2ZnO_2 + H_2O$$

Exercice 2 (7.2.3)

Sachant que l'air contient 21% vol de dioxygène et que la combustion de l'essence C₈H₁₈ (octane) conduit à la formation d'eau et de dioxyde de carbone, CO₂

- a) Ecrire et équilibrer la réaction de combustion
- b) quel est le volume d'air aux conditions normales (0°C et 1 atm), nécessaire pour assurer la combustion complète de 10 L C₈H₁₈ dont la masse volumique est 700 kg m⁻³?
- c) calculer la masse et le volume de CO₂ produits à 0°C et 1 atm?

Exercice 3

Soit la réaction suivante

$$2 \text{ C (s)} + \text{O}_2 \text{ (g)} \rightarrow 2 \text{ CO (g)}$$

On fait réagir 0.5 bar O₂ (g) avec du C (s) dans un réacteur de 2 L maintenu à 35°C. A la fin de la réaction, la pression totale dans le réacteur est de 0.8 bar. (Seules les espèces gazeuses contribuent à la pression.)

- a) Calculer le nombre de molécules de O₂ présentes au début de la réaction
- b) Quel est le réactif limitant ? Justifier brièvement
- c) Calculer la pression partielle de CO à la fin de la réaction.

Exercice 4 (7.2.4, modifié)

Soit la réaction suivante en milieu aqueux initiée à partir d'un mélange équimolaire de réactifs:

$$Cr_2O_3 + 3 NaNO_3 + 2 Na_2CO_3 \rightarrow 2 Na_2CrO_4 + 3 NaNO_2 + 2 CO_2$$

Exprimer la fraction molaire de chaque constituant du mélange final. On admet que le CO₂ gazeux s'échappe du mélange réactionnel et que la réaction est totale.

	_
HVATCICA	_
Exercice	J.

Soit la réaction suivante :

$$TiO_{2}\left(s\right)+2\;C(s)+2\;Cl_{2}(g)\;\rightarrow TiCl_{4}\left(g\right)+2\;CO\left(g\right)$$

On fait réagir 1.5 mol TiO_2 avec 40 g C(s) et $0.25 \text{ m}^3 \text{ Cl}_2(\text{g})$ à $950 ^{\circ}\text{C}$ et 1 bar. En considérant que la réaction est totale, indiquer la ou les propositions(s) correcte(s)

a) à la fin de la réaction, on obtient 1.5 mol TiCl ₄	
b) TiO ₂ est le réactif limitant	
c) Cl ₂ est le réactif limitant	
d) C est le réactif limitant	